Saturday, October 6, 2012

Different Distribution Tables

Different Distribution Tables

 

The Standard Normal Z-table

The Standard Normal Distribution is used in various hypothesis testing including tests on single means, tests on proportion and the difference between two means. The Z-table has a mean of 0 and a standard deviation of 1.


As shown in the illustration below, the values inside the given table represent the areas under the standard normal curve for values between 0 and relative z-score.
For example:
1. Determine the area under the curve between 0 and 2.36, first, look in the intersecting cell for the row labeled 2.30 and the column labeled 0.06.
The area under the curve is 0.4909.
To determine the area between 0 and a negative value, look in the intersecting cell of the row and column which sums to the absolute value of the number in question.
For example:
2. The area under the curve between -1.3 and 0 is equal to the area under the curve between 1.3 and 0, so look at the cell on the 1.3 row and the 0.00 column (the area is 0.4032). 



0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.0
0.0000
0.0040
0.0080
0.0120
0.0160
0.0199
0.0239
0.0279
0.0319
0.0359
0.1
0.0398
0.0438
0.0478
0.0517
0.0557
0.0596
0.0636
0.0675
0.0714
0.0753
0.2
0.0793
0.0832
0.0871
0.0910
0.0948
0.0987
0.1026
0.1064
0.1103
0.1141
0.3
0.1179
0.1217
0.1255
0.1293
0.1331
0.1368
0.1406
0.1443
0.1480
0.1517
0.4
0.1554
0.1591
0.1628
0.1664
0.1700
0.1736
0.1772
0.1808
0.1844
0.1879
0.5
0.1915
0.1950
0.1985
0.2019
0.2054
0.2088
0.2123
0.2157
0.2190
0.2224
0.6
0.2257
0.2291
0.2324
0.2357
0.2389
0.2422
0.2454
0.2486
0.2517
0.2549
0.7
0.2580
0.2611
0.2642
0.2673
0.2704
0.2734
0.2764
0.2794
0.2823
0.2852
0.8
0.2881
0.2910
0.2939
0.2967
0.2995
0.3023
0.3051
0.3078
0.3106
0.3133
0.9
0.3159
0.3186
0.3212
0.3238
0.3264
0.3289
0.3315
0.3340
0.3365
0.3389
1.0
0.3413
0.3438
0.3461
0.3485
0.3508
0.3531
0.3554
0.3577
0.3599
0.3621
1.1
0.3643
0.3665
0.3686
0.3708
0.3729
0.3749
0.3770
0.3790
0.3810
0.3830
1.2
0.3849
0.3869
0.3888
0.3907
0.3925
0.3944
0.3962
0.3980
0.3997
0.4015
1.3
0.4032
0.4049
0.4066
0.4082
0.4099
0.4115
0.4131
0.4147
0.4162
0.4177
1.4
0.4192
0.4207
0.4222
0.4236
0.4251
0.4265
0.4279
0.4292
0.4306
0.4319
1.5
0.4332
0.4345
0.4357
0.4370
0.4382
0.4394
0.4406
0.4418
0.4429
0.4441
1.6
0.4452
0.4463
0.4474
0.4484
0.4495
0.4505
0.4515
0.4525
0.4535
0.4545
1.7
0.4554
0.4564
0.4573
0.4582
0.4591
0.4599
0.4608
0.4616
0.4625
0.4633
1.8
0.4641
0.4649
0.4656
0.4664
0.4671
0.4678
0.4686
0.4693
0.4699
0.4706
1.9
0.4713
0.4719
0.4726
0.4732
0.4738
0.4744
0.4750
0.4756
0.4761
0.4767
2.0
0.4772
0.4778
0.4783
0.4788
0.4793
0.4798
0.4803
0.4808
0.4812
0.4817
2.1
0.4821
0.4826
0.4830
0.4834
0.4838
0.4842
0.4846
0.4850
0.4854
0.4857
2.2
0.4861
0.4864
0.4868
0.4871
0.4875
0.4878
0.4881
0.4884
0.4887
0.4890
2.3
0.4893
0.4896
0.4898
0.4901
0.4904
0.4906
0.4909
0.4911
0.4913
0.4916
2.4
0.4918
0.4920
0.4922
0.4925
0.4927
0.4929
0.4931
0.4932
0.4934
0.4936
2.5
0.4938
0.4940
0.4941
0.4943
0.4945
0.4946
0.4948
0.4949
0.4951
0.4952
2.6
0.4953
0.4955
0.4956
0.4957
0.4959
0.4960
0.4961
0.4962
0.4963
0.4964
2.7
0.4965
0.4966
0.4967
0.4968
0.4969
0.4970
0.4971
0.4972
0.4973
0.4974
2.8
0.4974
0.4975
0.4976
0.4977
0.4977
0.4978
0.4979
0.4979
0.4980
0.4981
2.9
0.4981
0.4982
0.4982
0.4983
0.4984
0.4984
0.4985
0.4985
0.4986
0.4986
3.0
0.4987
0.4987
0.4987
0.4988
0.4988
0.4989
0.4989
0.4989
0.4990
0.4990



T-table


The Shape of the Student's t distribution is determined by the degrees of freedom. As shown in the animation above, its shape changes as the degrees of freedom increases.

The T-distribution is used in hypothesis testing, t-test for independent samples and t-test for dependent samples in Basic Statistics and Tables. As indicated by the chart below, the areas given at the top of this table are the right tail areas for the t-value inside the table. To determine the 0.05 critical value from the t-distribution with 6 degrees of freedom, look in the 0.05 column at the 6 row = 1.943180.



df\p
0.40
0.25
0.10
0.05
0.025
0.01
0.005
0.0005
1
0.324920
1.000000
3.077684
6.313752
12.70620
31.82052
63.65674
636.6192
2
0.288675
0.816497
1.885618
2.919986
4.30265
6.96456
9.92484
31.5991
3
0.276671
0.764892
1.637744
2.353363
3.18245
4.54070
5.84091
12.9240
4
0.270722
0.740697
1.533206
2.131847
2.77645
3.74695
4.60409
8.6103
5
0.267181
0.726687
1.475884
2.015048
2.57058
3.36493
4.03214
6.8688

6
0.264835
0.717558
1.439756
1.943180
2.44691
3.14267
3.70743
5.9588
7
0.263167
0.711142
1.414924
1.894579
2.36462
2.99795
3.49948
5.4079
8
0.261921
0.706387
1.396815
1.859548
2.30600
2.89646
3.35539
5.0413
9
0.260955
0.702722
1.383029
1.833113
2.26216
2.82144
3.24984
4.7809
10
0.260185
0.699812
1.372184
1.812461
2.22814
2.76377
3.16927
4.5869

11
0.259556
0.697445
1.363430
1.795885
2.20099
2.71808
3.10581
4.4370
12
0.259033
0.695483
1.356217
1.782288
2.17881
2.68100
3.05454
4.3178
13
0.258591
0.693829
1.350171
1.770933
2.16037
2.65031
3.01228
4.2208
14
0.258213
0.692417
1.345030
1.761310
2.14479
2.62449
2.97684
4.1405
15
0.257885
0.691197
1.340606
1.753050
2.13145
2.60248
2.94671
4.0728

16
0.257599
0.690132
1.336757
1.745884
2.11991
2.58349
2.92078
4.0150
17
0.257347
0.689195
1.333379
1.739607
2.10982
2.56693
2.89823
3.9651
18
0.257123
0.688364
1.330391
1.734064
2.10092
2.55238
2.87844
3.9216
19
0.256923
0.687621
1.327728
1.729133
2.09302
2.53948
2.86093
3.8834
20
0.256743
0.686954
1.325341
1.724718
2.08596
2.52798
2.84534
3.8495

21
0.256580
0.686352
1.323188
1.720743
2.07961
2.51765
2.83136
3.8193
22
0.256432
0.685805
1.321237
1.717144
2.07387
2.50832
2.81876
3.7921
23
0.256297
0.685306
1.319460
1.713872
2.06866
2.49987
2.80734
3.7676
24
0.256173
0.684850
1.317836
1.710882
2.06390
2.49216
2.79694
3.7454
25
0.256060
0.684430
1.316345
1.708141
2.05954
2.48511
2.78744
3.7251

26
0.255955
0.684043
1.314972
1.705618
2.05553
2.47863
2.77871
3.7066
27
0.255858
0.683685
1.313703
1.703288
2.05183
2.47266
2.77068
3.6896
28
0.255768
0.683353
1.312527
1.701131
2.04841
2.46714
2.76326
3.6739
29
0.255684
0.683044
1.311434
1.699127
2.04523
2.46202
2.75639
3.6594
30
0.255605
0.682756
1.310415
1.697261
2.04227
2.45726
2.75000
3.6460

inf
0.253347
0.674490
1.281552
1.644854
1.95996
2.32635
2.57583
3.2905










   




   




The Chi-square Table

 

             Like the Student's t-Distribution, the Chi-square distribution's shape is determined by its degrees of freedom. The animation above shows the shape of the Chi-square distribution as the degrees of freedom increase (1, 2, 5, 10, 25 and 50). As shown in the illustration below, the values inside this table are critical values of the Chi-square distribution with the corresponding degrees of freedom. To determine the value from a Chi-square distribution (with a specific degree of freedom) which has a given area above it, go to the given area column and the desired degree of freedom row. For example, the .25 critical value for a Chi-square with 4 degrees of freedom is 5.38527. This means that the area to the right of 5.38527 in a Chi-square distribution with 4 degrees of freedom is .25.

 
Right tail areas for the Chi-square Distribution

df\area
.995
.990
.975
.950
.900
.750
.500
.250
.100
.050
.025
.010
.005
1
0.00004
0.00016
0.00098
0.00393
0.01579
0.10153
0.45494
1.32330
2.70554
3.84146
5.02389
6.63490
7.87944
2
0.01003
0.02010
0.05064
0.10259
0.21072
0.57536
1.38629
2.77259
4.60517
5.99146
7.37776
9.21034
10.59663
3
0.07172
0.11483
0.21580
0.35185
0.58437
1.21253
2.36597
4.10834
6.25139
7.81473
9.34840
11.34487
12.83816
4
0.20699
0.29711
0.48442
0.71072
1.06362
1.92256
3.35669
5.38527
7.77944
9.48773
11.14329
13.27670
14.86026
5
0.41174
0.55430
0.83121
1.14548
1.61031
2.67460
4.35146
6.62568
9.23636
11.07050
12.83250
15.08627
16.74960

6
0.67573
0.87209
1.23734
1.63538
2.20413
3.45460
5.34812
7.84080
10.64464
12.59159
14.44938
16.81189
18.54758
7
0.98926
1.23904
1.68987
2.16735
2.83311
4.25485
6.34581
9.03715
12.01704
14.06714
16.01276
18.47531
20.27774
8
1.34441
1.64650
2.17973
2.73264
3.48954
5.07064
7.34412
10.21885
13.36157
15.50731
17.53455
20.09024
21.95495
9
1.73493
2.08790
2.70039
3.32511
4.16816
5.89883
8.34283
11.38875
14.68366
16.91898
19.02277
21.66599
23.58935
10
2.15586
2.55821
3.24697
3.94030
4.86518
6.73720
9.34182
12.54886
15.98718
18.30704
20.48318
23.20925
25.18818

11
2.60322
3.05348
3.81575
4.57481
5.57778
7.58414
10.34100
13.70069
17.27501
19.67514
21.92005
24.72497
26.75685
12
3.07382
3.57057
4.40379
5.22603
6.30380
8.43842
11.34032
14.84540
18.54935
21.02607
23.33666
26.21697
28.29952
13
3.56503
4.10692
5.00875
5.89186
7.04150
9.29907
12.33976
15.98391
19.81193
22.36203
24.73560
27.68825
29.81947
14
4.07467
4.66043
5.62873
6.57063
7.78953
10.16531
13.33927
17.11693
21.06414
23.68479
26.11895
29.14124
31.31935
15
4.60092
5.22935
6.26214
7.26094
8.54676
11.03654
14.33886
18.24509
22.30713
24.99579
27.48839
30.57791
32.80132

16
5.14221
5.81221
6.90766
7.96165
9.31224
11.91222
15.33850
19.36886
23.54183
26.29623
28.84535
31.99993
34.26719
17
5.69722
6.40776
7.56419
8.67176
10.08519
12.79193
16.33818
20.48868
24.76904
27.58711
30.19101
33.40866
35.71847
18
6.26480
7.01491
8.23075
9.39046
10.86494
13.67529
17.33790
21.60489
25.98942
28.86930
31.52638
34.80531
37.15645
19
6.84397
7.63273
8.90652
10.11701
11.65091
14.56200
18.33765
22.71781
27.20357
30.14353
32.85233
36.19087
38.58226
20
7.43384
8.26040
9.59078
10.85081
12.44261
15.45177
19.33743
23.82769
28.41198
31.41043
34.16961
37.56623
39.99685

21
8.03365
8.89720
10.28290
11.59131
13.23960
16.34438
20.33723
24.93478
29.61509
32.67057
35.47888
38.93217
41.40106
22
8.64272
9.54249
10.98232
12.33801
14.04149
17.23962
21.33704
26.03927
30.81328
33.92444
36.78071
40.28936
42.79565
23
9.26042
10.19572
11.68855
13.09051
14.84796
18.13730
22.33688
27.14134
32.00690
35.17246
38.07563
41.63840
44.18128
24
9.88623
10.85636
12.40115
13.84843
15.65868
19.03725
23.33673
28.24115
33.19624
36.41503
39.36408
42.97982
45.55851
25
10.51965
11.52398
13.11972
14.61141
16.47341
19.93934
24.33659
29.33885
34.38159
37.65248
40.64647
44.31410
46.92789

26
11.16024
12.19815
13.84390
15.37916
17.29188
20.84343
25.33646
30.43457
35.56317
38.88514
41.92317
45.64168
48.28988
27
11.80759
12.87850
14.57338
16.15140
18.11390
21.74940
26.33634
31.52841
36.74122
40.11327
43.19451
46.96294
49.64492
28
12.46134
13.56471
15.30786
16.92788
18.93924
22.65716
27.33623
32.62049
37.91592
41.33714
44.46079
48.27824
50.99338
29
13.12115
14.25645
16.04707
17.70837
19.76774
23.56659
28.33613
33.71091
39.08747
42.55697
45.72229
49.58788
52.33562
30
13.78672
14.95346
16.79077
18.49266
20.59923
24.47761
29.33603
34.79974
40.25602
43.77297
46.97924
50.89218
53.67196



 

The F Distribution

The F distribution is a right-skewed distribution used most commonly in Analysis of Variance. The F distribution is a ratio of two Chi-square distributions, and a specific F distribution is denoted by the degrees of freedom for the numerator Chi-square and the degrees of freedom for the denominator Chi-square.. When referencing the F distribution, the numerator degrees of freedom are always given first, as switching the order of degrees of freedom changes the distribution (e.g., F(10,12) does not equal F(12,10)). For the four F tables below, the rows represent denominator degrees of freedom and the columns represent numerator degrees of freedom. 


By: Tito Nuevacobita Jr. 
III-Gold



3 comments: